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Abstract. We consider a two-parameter non-Hermitian quantum mechanical Hamiltonian
operator that is invariant under the combined effects of parity and time reversal transformations.
Numerical investigation shows that for some values of the potential parameters the Hamiltonian
operator supports real eigenvalues and localized eigenfunctions. In contrast with other parity times
time reversal symmetric models which require special integration paths in the complex plane, our
model is integrable along a line parallel to the real axis.

1. Introduction

Recent analysis of the spectra of the family of Sdlimger operators with a complex parity
times time reversal (PT) invariant potential [1]
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has raised considerable interest in such a class of operators [2—6]. The motivation for the
requirement of PT (actually, complex conjugation) symmetry comes from a conjecture of
D Bessis relating it to the existence of real-energy bound states (in other words, non-decaying
resonances). From a practical point of view, PT symmetry is a way of selecting a specific
Riemann sheet in the-oo, 0) cut complex coordinate plane, the cut being necessary to cope
with thex = 0 branch point of the potential.

The loss of hermiticity off seems to imply complex energies for localized eigenstates,
withIm E, # 0 (i.e. levels with nonzero widths), and consequently a certain rate of decay of any
initially localized state. The loss of hermiticity may be mediated, e.g., by a spatial asymmetry
of the potential. For example, it seems obvious that the cubic anharmonic Hamiltonian
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Hz—ﬁ +x2+gx3 (2)

H =

allows particles to escape to infinity for any real coupling 0.
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A deeper perturbative and Borel-summation analysis of this problem proved such an
oversimplified thumb rule wrong many years ago. Calicettal [7] have shown that the
spectrum of the cubic anharmonic oscillator (2) becomely real and positive at any
purely imaginary couplingg = ig; with g; > 0. Moreover, the interpretation of the set
of resonances of the Hamiltonian (2) as analogous to a set of bound states requires a suitable
analytic continuation iz and/or a careful deformation of the integration path [8].

The Schédinger equation for the Hamiltonian operator equation (1) cannot be integrated
algebraically, and one has to resort to numerical methods for its analysis. Catrai§®hhave
found a way of generating complex Hamiltonians related to real Hamiltonians, by applying a
method invented by Darboux more than 100 years ago. Unfortunately, the resulting models
have a very complicated structure.

In this paper we propose a family of problems characterized by two parameters, see
equation (3) below, one of therm)playing a role analogous to the paramet@f equation (1)
and the otherf) serving totunethe interaction thus widening the richness of the spectrum.
Our study of this family will be numerical or, in other words, phenomenological, hoping that
it will help a further mathematical analysis. One of the main simplifications of our model is
that the required complex integration paths are lines parallel to the real axis, easy to implement
and to interpret.

2. The model

We consider the two-parameter family of one-dimensional potentials

V,p = —(isinhx)* cosH x ()
for arbitrary real values af andg. These functions have, in general, a branch point2at0
and we select such a branch that the real part of the potensighimetricand the imaginary

partantisymmetriavith respect to the origin. Specifically, the potential will be defined by the
two equations

x > 0V (x) = €7@/ 2 ginH x cost x
x < OV (x) = e'"@*/2gink | x| cosH x
thus having an invariant Hamiltonian under the PT transformation, i.e., parity transformation
and complex conjugation. This requires us to cut the compielane fromx = 0 up to
x = —oo, and to consider the relevant negativevalues below the cut, i.e. with a small
negative imaginary part or a phaser.
The characteristic values of the potential for different values of the paramatershown
in table 1, where we only see the regiere [0, 4], because the same structure is repeated

Table 1. Variability of our PT symmetric potential with parameterfor x > 0 and any reaB.

o Real part  Imaginary part
0 VR<O V]IO
O<a<l Vg<O Vi<O0
a=1 VRZO V]<0
l<a<2 Vg>0 Vi <0
oa=2 Vg >0 Vi=0
2<a<3 Vg>0 Vi>0
a=3 Vg =0 Vi>0

3<a<4 Vg<O Vi>0
a=4 VR<O V1=0
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for larger values o& with period four. In all cases, both the real and imaginary parts of the
potential tend to eitherao or —oo at long distances, when— +oo. The value of8 does not
affect the main features of the potential, except for the fact that negative valgesaf give
rise to non-confining potentials. We exclude such cases from this paper and always consider
a+p>0.

The interesting point about PT symmetric Hamiltonians

2

d
H=—@+Va5(x) 4)

is that they may haveocalizedsolutions, corresponding to real eigenvalues, which may be
interpreted either as bound states or as zero width resonances.

The special case = 2 corresponds to a positive and confining potential, with an infinite
number of bound states. It will be a suitable reference point for calculations corresponding to
other values o&. We will move towardsr > 2 andx < 2 starting from a given eigenvalue of
the caser = 2 to show the evolution of the real-energy eigenstates.

Analogously, one may take any other reference value-efa i which produces a real and
positive confining potential, likey = 6, «x = 10, and so on. Selecting a different value of
ag means to consider a different eigenvalue problem, which will be labelled by that particular
reference valuei. Here we will concentrate on the casg = 2 mentioned above, and also
raise considerations for other valuesgf.

This family of potentials is similar to the one-parameter fanilix) = —(ix) recently
considered by Bender and Boettcher [1], but the exponential growth of our potentials at long
distances simplifies the analysis of their properties.

3. Paths in the complex plane

By carrying out the integration of the S¢itlinger equation

d?W(x)
dx2

along the real axis (see below for more details), for valueg ef [0, 4], one observes that

there are solutions for real values of the enefyysmoothly connected with the solutions of

the real potential witle = 2. The wavefunctions are complex, and may be chosen to have a

symmetric real part and an antisymmetric imaginary part. The last statement is a consequence

of the PT invariance, which requires that (—x) is a solution of the Sckdinger equation if

W (x) is a solution for aeal eigenvalueE. On choosing an appropriate phase factor one may

then have the mentioned symmetries for the localized wavefunctions.

As discussed above, the point= 2 is an exception, because the Hamiltonian is separately
parity and time-reversal invariant. Therefore, one can choose the wavefunctions to be real,
and either symmetric or antisymmetric with respect te 0.

At « = 4 the potential is real and everywhere negative; consequently there are no
eigenstates with real eigenvalues. Real eigenvalues appear againefdr, 8[, which are
smoothly connected with the cage= 6. The same pattern is repeated at eveey 2 + 4N,
for positive integer values a¥, as we increase.

These facts are shown in figure 1, for the cAse 0. There, we clearly see the existence
of two (in general, many) different problems, one centredat= 2 and the other centred
aroundar = 6. The purpose of this section is to find a path in the complgiane to obtain
lines like the dashed one, which represents the continuation of the eigenvalue beyond the limit
o =4,

+ Vg W(x) = EW(x) ®)
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Figure 1. Integration of the Sclidinger equation along the reedaxis, for the model potential

Vag- Only the ground-state energy is shown. The two branches correspond to solutions smoothly
connected with the eigenvalues i@ = 2 (left curve) andvg = 6 (right curve). The dashed

line depicts the expected eigenvalues after an appropriate analytic continuation into the complex
x-plane, for the solutions smoothly connected with= 2.

The first question to consider is whether there are confined solutions. To this end we take
into account the limit — +oo in the Schodinger equation, where the potential is dominated
by the exponential part

Vip (x) — explin (2 +a) /2] expl(e + B)x]/2**F.

One proceeds as in the WKB method assuming a general solution of thedfgemn =
exp[G (x)]. The leading order of the asymptotic expansiondu) is
. Ze(oz+ﬂ)x/2
Gx) — :I:e'”(2+°‘)/4_2(a+ﬂ)/2(a 5 (6)
where the plus and minus signs come from a square root which appears in the differential
equation forG (x).

Except for the particular cases= 4N, N = 0, 1, ..., there appears to exist a solution
such thatthe real part 6¢f(x) is negative and its magnitude increases exponentially, suggesting
adiscrete set of eigenvalues with localized solutions. As mentioned above, we teggiire 0
in order to have asymptotically vanishing solutions at long distances.

The only general statement to be drawn from the above asymptotic limit is that, as far
as the phase (2 +«)/4 is different from a half-integer multiple of, there are two possible
asymptotic solutions, one growing and the other one decreasing at long distances; therefore,
one one may expect to find one or more value& dhat select the asymptotically vanishing
solutions corresponding to localized states.

3.1. Thexg = 2 family

Whena = 2 the phase factor in equation (6) is €ip), and the required solution is the one
with the plus sign in front of it (remember thdt = exp[G(x)]). Fora = 2 +§ the phase
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factor changes ta + 87 /4, and the solution behaves asymptotically as
W (x) — exp[[— cogsm/4) — isin(Sm/4)]e @ P*/?]

whenx — oo; i.e., the exponentially decreasing part subsists as fat|as 2. The farther
we move fromx = 2 the slower the exponentially decreasing part approaches zero, indicating
that the asymptotic regime will be reached at much larger distances.
There is a way of both movingsymptotiacloser and extending the integration beyond
a = 4, which consists in adding to the integration variable an imaginary componesich
should be negative to be consistent with the potential branch required by the PT symmetry.
After the replacement < x +iy in equation (6) the phase angle of the auxiliary funciidn
is changed to
m+2) ylatp)
2 + > (7
The line corresponding # = 7 labels the path of fastest decrease of the exponentiz(tiire
Stokedines of [1]), and the boundaries of the region of convergence result from the solutions

of = £7/2.
The optimal path corresponds to a valueydjiven by
2—-a)
== 8
Y 2(a+pB) (®)

and remains negative for any valuecof- 2, fulfilling the requirement for PT symmetry. The
integration, however, may be performed for any value of the range

_ 4—-a)r
7T 2a+p)

N oTT
T T 2@+ p)

so that, fore < 2 the integration should be carried out along the neakis to satisfy PT
symmetry. The optimal and boundary valuey @re plotted in figure 2. We see that without
violating PT symmetry, the integration may be carried out along the real axisaup-td.

Here our model differs significantly from that considered by Bender and Boettcher [1].
In their model, equation (1), the integration must be carried out along two symmetric sectors,
one in the lower-right complex-plane, and the other symmetric with respect to the imaginary
axis. The optimal line is given byexp(if), wheref = — (o — 2) /(¢ +2) (5t /2), in such a way
that it tends to coincide with the negative imaginary axis for large values bf our case the
displacemeny remains bounded in the largelimit, having the value-r /2.

3.2. The families foar = 6 and beyond

We can carry out an analogous study for the family of potentials connectee-t6, 10, .. ..
For the caser = 6 one obtains the optimal displacement
6—a)r
YT 2+ p)
and the lower limit
4—-a)r
"7 2a+p)
which is suitable for the integration when> 4.

To extend the integration @ < 4 we choose an alternative path given by the solution
with minus sign in equation (6), leading to an optimal displacemeat—m (« + 6) /2(a + ).
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2

y ot p=0

Figure 2. The continuous line represents the preferred value of the imaginary @aftied to
the coordinatex, for each value of and for the family of eigenstates smoothly connected with
ag = 2. The two dashed curves are the boundaries of the acceptable values of

After this discussion we clearly understand the peculiar behaviour of the lowest real
eigenvalue shown in figure 1. The integration having been carried out along the real axis, the
lowest eigenvalues jump from family to family when crossing the points where the potential
is purely imaginary. Actually, the way of obtaining the eigenvalue by requiring that only the
normalizable component survives selects the plus or minus sign in equation (6). In this way,
in addition to the lack of continuity in the eigenvalues, one may also observe a sudden jump in

the phase of the wavefunction (i.e. the sign of the imaginary part i¢avt@n crossing each
special case mentioned above.

3.3. The role of the shift

It is not difficult to understand the role of the change of variable- x + iy if we just carry

it out explicitly in equation (5). The potential-energy function in the resulting &tihger
equation reads

Vet (x) = V(x +iy)
so that the new potential with the above-mentioned valugstafs a dominant confining real
part and a much smaller imaginary part.
The actual effect of the transformation is shown in figure 3 for three values. of
Particularly impressive is the cage= 4 which originally was a real and negative potential, and

after the transformation exhibits a dominant real confining component. The transformation of
the potential guarantees the connection through the special poiat4éN.

4. Numerical integration

The numerical calculation of the eigenvalues of the 8dimger equation (5) with a complex

potential and along a complex path, is as simple as in the case of real potentials along a real
path.
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Figure 3. Real (left) and imaginary (right) parts of the effective potential obtained by shifting the
real variablex to the lower part of the complex plane with the optinyavalue. The potentials
correspond to the phase selection appropriate for the family smoothly connected-wigh The
calculations were performed with = 0 for three values o& = 2,3 and 4, which label the
corresponding curve.

We have chosen the simplest algorithm which starts by selecting two extreme p@ints,
and X max at which the wavefunction is assumed to vanish, and discretizing this interval with
a uniform integration step, defined in terms of the number of pointsas
Xmax — Xmin

N+1
Inorderto preserve the PT invariance in the discretization, itis necessary toiake — Xmax-
An integer countek labels the mesh points ag = Xmin + kh. Approximating the second
derivative by the second differences operator,

dZ\I/k - Wi — 2\IJk + W,

dx2 — h?
the continuous eigenvalue problem becomes a discrete one givegiyzetri@ndtridiagonal
matrix of dimensiorv and matrix elements

h =

Hi= 2+,
i = 75 k

kg ©)
Hijv1 = 2

Itis understood that, = V (Xmin +kh +iy) in the equation above, wheysds the appropriate
imaginary shift already described earlier.

The tridiagonal matrix is symmetric, but, contrary to the case of a real potential, it is not
Hermitian. The roots of the determinant

Dy(E) =det[H —IE] =0
give the eigenvalues approximately. The calculation is greatly facilitated by the three-point
recurrence relation

D,(E) = Dy 1(E)(H,, — E) — H?

n,n—1

D> n=23..,N (10

with the starting condition®, = 1 andD; = Hy1 — E. This recurrence relation exhibits the
same structure as in the case of a real potential, but not the same properties. Inthe case of areal
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potential every term of the sequence is real, and the set constitGtesma sequend®, 10].

This property allows one to devise a simple search algorithm, combining the counting of sign

changes of the sequence with the bisection method to determine efficiently the eigenvalues.
This scheme is not appropriate for our case because the potential is complex. However,

an important feature of our approach is that PT symmetric potentials give rise to determinants

which are polynomial functiong with real coefficients. The proof is quite simple. First one

notices that the diagonal matrix elements satisfy the rule

_ *
H;; = HN—i+1,N—i+lv

consequence of the PT symmetry. So, the time reversal operation T, which corresponds to
changing each element of the diagonal by its complex conjugate, is equivalent to applying
the parity P operation, which corresponds to changing every element of the diagonal by its
symmetric with respect to the centre of the diagonal (this operation is carried out by a similarity
transformation with an orthogonal matrix having all elements equal to zero with the exception
of the counter-diagonal elements which are unity).

In conclusion, the determinant & — E is real for real values of. This is true only
if Xmin = —Xmax iN such a way that only the determinaBy, is real, but not the terms of
the sequenc®, with n < N. This feature allows the use of the robust bisection method to
determine the eigenvalues.

In almost all cases, we have set the valuerand then determined the corresponding
eigenvalue. However, in the neighbourhoods of the points where two real eigenvalues collapse
into a pair of complex conjugate eigenvalues, it is more convenient to determine the value of
« for a given eigenvalue. In any case, the method is simple and robust.

5. The mutual interplay of «, 3 and energies

Having arrived at the proper way of extending our calculations beyond the special points
a = 4N, our next step is the recomputation of figure 1 including some excited levels.

Figure 4 shows results for several levels and for the two sets smoothly connected with
«a = 2 anda = 6. The main feature of this figure is that there is a one-to-one correspondence
between an eigenvalue withclose to two and an eigenvalue of the real confining potential
with « = 2. The same situation takes placexat= 6, and it is easily proved by means of
perturbation theory fow close to 26, .. ..

Our numerical calculations suggest that there will be real eigenvalues within each family
with « greater than the reference valug = 2, and that for smaller values of the real
eigenvalues merge into pairs of complex conjugate valudg omtil reaching the vicinity of
«a = 1 where once again real eigenvalues are allowed.

Figure 5 shows in detail the special characteristics of the levelsaneat for 8 = 0. In
particular, this figure illustrates the simultaneous jump of the fourth and fifth levels into the
complex plane, near = 1.15, and their simultaneous return to the real axis wheslightly
greater than unity. The same pattern also seems to happen for higher levels. Obviously, as
far as the characteristic polynomial is real, the transition from real to complex values must be
in pairs. We have not observed a similar phenomenon in the case of the set connected with
a = 6, but it may well happen for levels of energy higher than those shown in figure 4.

Up to now we have concentrated on calculations \ite 0. Figure 6 illustrates the role
of the parameteg. In addition to the casg = O, this figure also displays the lowest levels
for several values of, both positive and negative. The interesting rolgga$ to switch the
speciallevel, i.e., the level which ultimately will move arounad= 1. With its help one may
choose this special level to be the first o =£ —0.25), the third onef = 0), the fifth one
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Figure 4. Spectrum of the PT invariant Hamiltonian with the potentigi andg = 0, showing
several bound states corresponding to two families, one connected with (continuous curves)
and the other connected with= 6 (dashed curves).
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Figure 5. Enlarged view of the spectrum f@r= 0 nearoe = 1.

(B = 0.25) and so on. Because of the special way the levels form the pairs, one should not be
surprised that even levels cannot becapecialin the above-mentioned sense.

6. Quasi-algebraic study

As in our previous paper on the subject, we have also supplemented the numerical calculation
with the Riccati-Paél method (RPM). Whea = 2 andB = 0 the potential-energy function is
parity invariant and the RPM leads to just one Hankel determinant from which one obtains the
eigenvalues [12]. The calculation is straightforward and the rate of convergence sufficiently
great as shown in table 2.
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Figure 6. Several eigenvalues computeddat= 0.5, 8 = 0.25,8 = 0 andg = —0.25.

Table 2. The RPM ground-state energy fér= 0 ande = 2 in terms of the dimension of the Rad
determinant.

D RPMroot

1.213616523
1.211409311
1.211411109
1.2114109830
1.211410984 169
1.2114109841755
1.21141098417527

O ~NOOUDh WN

For non-Hermitian cases we change the coordinate according=0ig so that the
Hamiltonian operator becomes

2

d - « B
_H— a7 +[—sin(¢)]* cosq)

and we can apply the RPM as in the case of a real®lihger equation. If the potential energy
is an even function of we apply the method just indicated; if it is not then the RPM leads
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Table 3. The RPM ground-state energies for the non-Hermitian casesl anda = 3. In both

cases ig = 0.
a=1 a=1 a=3 a=3
D E iw’(0)/¥(0) E v’ (0)/¥(0)

2 1.655005966 1.033573034 — —

3 1.765033153 1.095023981 1.385656 774.504 969 7062
4 1.765157398 1.095137449 1.34986953®.476 995 2880
5 1.765157246 1.095137384 1.350149473.4771536171
6 — — 1.350140759-0.477 152 0606
Numeric  1.765157 25 1.09513737 1.350140990.477 152 00

Table 4. The RPM ground-state energies for the non-Hermitian casesl anda = 3 with the
complex rescaled Hamiltonian. In both caseg is 0.

D E@=1) E(x=3)

2 1.765248635 2.609 040864 09
3 1765157328 2.595107 274 93
4 1.765157255 2.595248 416 37
5  1.76515725525231 2.595 245 998 23
6 1.76515725525336 2.595 246 050 87
7  1.7651572552533587  2.595246 05034
8 1.76515725525335874 —

to two Hankel determinants [13] from which we obtain bé@tand—i¥’(0)/ ¥ (0). Table 3
shows results for = 1 anda = 3 in excellent agreement with the numerical integration
discussed above.

We have carried out the RPM calculations algebraically by means of Maple, resorting to
a numerical approach just at the end in order to obtain the roots of the Hankel determinants
[12, 13]. For this reason the requirement of computer memory is considerable in the case of
a non-symmetric potential-energy function, and we cannot handle determinants of the same
dimension as in the symmetric case. [Boe= 0 we have tried to overcome this problem by
means of the change of coordinate= i(u + 7/2) [11] and applying RPM for symmetric
potential-energy functions to the resulting Hamiltonian operator

2
—H = ——— +[—cosu]*.
a2 ! ]

Table 4 shows results fer = 1 anda = 3. In the former case the result is identical (though
more accurate) to the one shown in table 3; however, in the latter case we do not obtain the
lowest eigenvalue but the first excited one. We have not yet being able to justify this anomalous
behaviour of the RPM whem = 3.
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