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Abstract. We consider a two-parameter non-Hermitian quantum mechanical Hamiltonian
operator that is invariant under the combined effects of parity and time reversal transformations.
Numerical investigation shows that for some values of the potential parameters the Hamiltonian
operator supports real eigenvalues and localized eigenfunctions. In contrast with other parity times
time reversal symmetric models which require special integration paths in the complex plane, our
model is integrable along a line parallel to the real axis.

1. Introduction

Recent analysis of the spectra of the family of Schrödinger operators with a complex parity
times time reversal (PT) invariant potential [1]

H = − d2

dx2
− (ix)α (1)

has raised considerable interest in such a class of operators [2–6]. The motivation for the
requirement of PT (actually, complex conjugation) symmetry comes from a conjecture of
D Bessis relating it to the existence of real-energy bound states (in other words, non-decaying
resonances). From a practical point of view, PT symmetry is a way of selecting a specific
Riemann sheet in the(−∞, 0) cut complex coordinate plane, the cut being necessary to cope
with thex = 0 branch point of the potential.

The loss of hermiticity ofH seems to imply complex energies for localized eigenstates,
with ImEn 6= 0 (i.e. levels with nonzero widths), and consequently a certain rate of decay of any
initially localized state. The loss of hermiticity may be mediated, e.g., by a spatial asymmetry
of the potential. For example, it seems obvious that the cubic anharmonic Hamiltonian

H = − d2

dx2
+ x2 + gx3 (2)

allows particles to escape to infinity for any real couplingg 6= 0.
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A deeper perturbative and Borel-summation analysis of this problem proved such an
oversimplified thumb rule wrong many years ago. Calicettiet al [7] have shown that the
spectrum of the cubic anharmonic oscillator (2) becomespurely real and positive at any
purely imaginary couplingg = igI with gI > 0. Moreover, the interpretation of the set
of resonances of the Hamiltonian (2) as analogous to a set of bound states requires a suitable
analytic continuation ing and/or a careful deformation of the integration path [8].

The Schr̈odinger equation for the Hamiltonian operator equation (1) cannot be integrated
algebraically, and one has to resort to numerical methods for its analysis. Cannataet al [3] have
found a way of generating complex Hamiltonians related to real Hamiltonians, by applying a
method invented by Darboux more than 100 years ago. Unfortunately, the resulting models
have a very complicated structure.

In this paper we propose a family of problems characterized by two parameters, see
equation (3) below, one of them (α) playing a role analogous to the parameterα of equation (1)
and the other (β) serving totunethe interaction thus widening the richness of the spectrum.
Our study of this family will be numerical or, in other words, phenomenological, hoping that
it will help a further mathematical analysis. One of the main simplifications of our model is
that the required complex integration paths are lines parallel to the real axis, easy to implement
and to interpret.

2. The model

We consider the two-parameter family of one-dimensional potentials

Vαβ = −(i sinhx)α coshβ x (3)

for arbitrary real values ofα andβ. These functions have, in general, a branch point atx = 0
and we select such a branch that the real part of the potential issymmetricand the imaginary
partantisymmetricwith respect to the origin. Specifically, the potential will be defined by the
two equations

x > 0V (x) = eiπ(2+α)/2 sinhα x coshβ x

x < 0V (x) = e−iπ(2+α)/2 sinhα |x| coshβ x

thus having an invariant Hamiltonian under the PT transformation, i.e., parity transformation
and complex conjugation. This requires us to cut the complexx-plane fromx = 0 up to
x = −∞, and to consider the relevant negativex values below the cut, i.e. with a small
negative imaginary part or a phase−π .

The characteristic values of the potential for different values of the parameterα are shown
in table 1, where we only see the regionα ∈ [0, 4], because the same structure is repeated

Table 1. Variability of our PT symmetric potential with parameterα, for x > 0 and any realβ.

α Real part Imaginary part

0 VR < 0 VI = 0
0< α < 1 VR < 0 VI < 0
α = 1 VR = 0 VI < 0
1< α < 2 VR > 0 VI < 0
α = 2 VR > 0 VI = 0
2< α < 3 VR > 0 VI > 0
α = 3 VR = 0 VI > 0
3< α < 4 VR < 0 VI > 0
α = 4 VR < 0 VI = 0
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for larger values ofα with period four. In all cases, both the real and imaginary parts of the
potential tend to either +∞ or−∞ at long distances, whenx →±∞. The value ofβ does not
affect the main features of the potential, except for the fact that negative values ofβ may give
rise to non-confining potentials. We exclude such cases from this paper and always consider
α + β > 0.

The interesting point about PT symmetric Hamiltonians

H = − d2

dx2
+ Vαβ(x) (4)

is that they may havelocalizedsolutions, corresponding to real eigenvalues, which may be
interpreted either as bound states or as zero width resonances.

The special caseα = 2 corresponds to a positive and confining potential, with an infinite
number of bound states. It will be a suitable reference point for calculations corresponding to
other values ofα. We will move towardsα > 2 andα < 2 starting from a given eigenvalue of
the caseα = 2 to show the evolution of the real-energy eigenstates.

Analogously, one may take any other reference value ofα = αR which produces a real and
positive confining potential, likeαR = 6, αR = 10, and so on. Selecting a different value of
αR means to consider a different eigenvalue problem, which will be labelled by that particular
reference valueαR. Here we will concentrate on the caseαR = 2 mentioned above, and also
raise considerations for other values ofαR.

This family of potentials is similar to the one-parameter familyV (x) = −(ix)α recently
considered by Bender and Boettcher [1], but the exponential growth of our potentials at long
distances simplifies the analysis of their properties.

3. Paths in the complex plane

By carrying out the integration of the Schrödinger equation

−d29(x)

dx2
+ Vαβ9(x) = E9(x) (5)

along the real axis (see below for more details), for values ofα ∈ [0, 4[, one observes that
there are solutions for real values of the energyE, smoothly connected with the solutions of
the real potential withα = 2. The wavefunctions are complex, and may be chosen to have a
symmetric real part and an antisymmetric imaginary part. The last statement is a consequence
of the PT invariance, which requires that9∗(−x) is a solution of the Schrödinger equation if
9(x) is a solution for areal eigenvalueE. On choosing an appropriate phase factor one may
then have the mentioned symmetries for the localized wavefunctions.

As discussed above, the pointα = 2 is an exception, because the Hamiltonian is separately
parity and time-reversal invariant. Therefore, one can choose the wavefunctions to be real,
and either symmetric or antisymmetric with respect tox = 0.

At α = 4 the potential is real and everywhere negative; consequently there are no
eigenstates with real eigenvalues. Real eigenvalues appear again forα ∈]4, 8[, which are
smoothly connected with the caseα = 6. The same pattern is repeated at everyα = 2 + 4N ,
for positive integer values ofN , as we increaseα.

These facts are shown in figure 1, for the caseβ = 0. There, we clearly see the existence
of two (in general, many) different problems, one centred atαR = 2 and the other centred
aroundαR = 6. The purpose of this section is to find a path in the complexx-plane to obtain
lines like the dashed one, which represents the continuation of the eigenvalue beyond the limit
α = 4.
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Figure 1. Integration of the Schrödinger equation along the realx-axis, for the model potential
Vαβ . Only the ground-state energy is shown. The two branches correspond to solutions smoothly
connected with the eigenvalues forαR = 2 (left curve) andαR = 6 (right curve). The dashed
line depicts the expected eigenvalues after an appropriate analytic continuation into the complex
x-plane, for the solutions smoothly connected withαR = 2.

The first question to consider is whether there are confined solutions. To this end we take
into account the limitx → +∞ in the Schr̈odinger equation, where the potential is dominated
by the exponential part

Vαβ(x)→ exp[iπ(2 +α)/2] exp[(α + β)x]/2α+β.

One proceeds as in the WKB method assuming a general solution of the form9(x) =
exp[G(x)]. The leading order of the asymptotic expansion forG(x) is

G(x)→±eiπ(2+α)/4 2e(α+β)x/2

2(α+β)/2(α + β)
(6)

where the plus and minus signs come from a square root which appears in the differential
equation forG(x).

Except for the particular casesα = 4N , N = 0, 1, . . . , there appears to exist a solution
such that the real part ofG(x) is negative and its magnitude increases exponentially, suggesting
a discrete set of eigenvalues with localized solutions. As mentioned above, we requireα+β > 0
in order to have asymptotically vanishing solutions at long distances.

The only general statement to be drawn from the above asymptotic limit is that, as far
as the phaseπ(2 +α)/4 is different from a half-integer multiple ofπ , there are two possible
asymptotic solutions, one growing and the other one decreasing at long distances; therefore,
one one may expect to find one or more values ofE that select the asymptotically vanishing
solutions corresponding to localized states.

3.1. TheαR = 2 family

Whenα = 2 the phase factor in equation (6) is exp(iπ), and the required solution is the one
with the plus sign in front of it (remember that9 = exp[G(x)]). For α = 2 + δ the phase
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factor changes toπ + δπ/4, and the solution behaves asymptotically as

9(x)→ exp[[− cos(δπ/4)− i sin(δπ/4)]e(α+β)x/2]

whenx → ∞; i.e., the exponentially decreasing part subsists as far as|δ| < 2. The farther
we move fromα = 2 the slower the exponentially decreasing part approaches zero, indicating
that the asymptotic regime will be reached at much larger distances.

There is a way of both movingAsymptotiacloser and extending the integration beyond
α = 4, which consists in adding to the integration variable an imaginary component iy which
should be negative to be consistent with the potential branch required by the PT symmetry.
After the replacementx ← x + iy in equation (6) the phase angle of the auxiliary functionG

is changed to

θ = π(α + 2)

4
+
y(α + β)

2
. (7)

The line corresponding toθ = π labels the path of fastest decrease of the exponential (theanti-
Stokeslines of [1]), and the boundaries of the region of convergence result from the solutions
of θ = π ± π/2.

The optimal path corresponds to a value ofy given by

y = (2− α)π
2(α + β)

(8)

and remains negative for any value ofα > 2, fulfilling the requirement for PT symmetry. The
integration, however, may be performed for any value ofy in the range

y+ = (4− α)π
2(α + β)

y− = − απ

2(α + β)

so that, forα < 2 the integration should be carried out along the realx-axis to satisfy PT
symmetry. The optimal and boundary values ofy are plotted in figure 2. We see that without
violating PT symmetry, the integration may be carried out along the real axis up toα = 4.

Here our model differs significantly from that considered by Bender and Boettcher [1].
In their model, equation (1), the integration must be carried out along two symmetric sectors,
one in the lower-right complexx-plane, and the other symmetric with respect to the imaginary
axis. The optimal line is given byx exp(iθ), whereθ = −(α−2)/(α + 2)(π/2), in such a way
that it tends to coincide with the negative imaginary axis for large values ofα. In our case the
displacementy remains bounded in the large-α limit, having the value−π/2.

3.2. The families forαR = 6 and beyond

We can carry out an analogous study for the family of potentials connected toα = 6, 10, . . . .
For the caseα = 6 one obtains the optimal displacement

y = (6− α)π
2(α + β)

and the lower limit

y− = (4− α)π
2(α + β)

which is suitable for the integration whenα > 4.
To extend the integration toα < 4 we choose an alternative path given by the solution

with minus sign in equation (6), leading to an optimal displacementy = −π(α + 6)/2(α +β).
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Figure 2. The continuous line represents the preferred value of the imaginary party added to
the coordinatex, for each value ofα and for the family of eigenstates smoothly connected with
αR = 2. The two dashed curves are the boundaries of the acceptable values ofy.

After this discussion we clearly understand the peculiar behaviour of the lowest real
eigenvalue shown in figure 1. The integration having been carried out along the real axis, the
lowest eigenvalues jump from family to family when crossing the points where the potential
is purely imaginary. Actually, the way of obtaining the eigenvalue by requiring that only the
normalizable component survives selects the plus or minus sign in equation (6). In this way,
in addition to the lack of continuity in the eigenvalues, one may also observe a sudden jump in
the phase of the wavefunction (i.e. the sign of the imaginary part near 0+) when crossing each
special case mentioned above.

3.3. The role of the shifty

It is not difficult to understand the role of the change of variablex → x + iy if we just carry
it out explicitly in equation (5). The potential-energy function in the resulting Schrödinger
equation reads

Veff(x) = V (x + iy)

so that the new potential with the above-mentioned values ofy has a dominant confining real
part and a much smaller imaginary part.

The actual effect of the transformation is shown in figure 3 for three values ofα.
Particularly impressive is the caseα = 4 which originally was a real and negative potential, and
after the transformation exhibits a dominant real confining component. The transformation of
the potential guarantees the connection through the special pointsα = 4N .

4. Numerical integration

The numerical calculation of the eigenvalues of the Schrödinger equation (5) with a complex
potential and along a complex path, is as simple as in the case of real potentials along a real
path.



A family of complex potentials with real spectrum 3111

Figure 3. Real (left) and imaginary (right) parts of the effective potential obtained by shifting the
real variablex to the lower part of the complex plane with the optimaly value. The potentials
correspond to the phase selection appropriate for the family smoothly connected withα = 2. The
calculations were performed withβ = 0 for three values ofα = 2, 3 and 4, which label the
corresponding curve.

We have chosen the simplest algorithm which starts by selecting two extreme points,Xmin

andXmax, at which the wavefunction is assumed to vanish, and discretizing this interval with
a uniform integration steph, defined in terms of the number of pointsN as

h = Xmax−Xmin

N + 1
.

In order to preserve the PT invariance in the discretization, it is necessary to takeXmin = −Xmax.
An integer counterk labels the mesh points asxk = Xmin + kh. Approximating the second
derivative by the second differences operator,

d29k

dx2
' 9k+1− 29k +9k−1

h2

the continuous eigenvalue problem becomes a discrete one given by asymmetricandtridiagonal
matrix of dimensionN and matrix elements

Hii = 2

h2
+ Vk

Hi,i+1 = − 1

h2
.

(9)

It is understood thatVk = V (Xmin + kh+ iy) in the equation above, wherey is the appropriate
imaginary shift already described earlier.

The tridiagonal matrix is symmetric, but, contrary to the case of a real potential, it is not
Hermitian. The roots of the determinant

DN(E) = det[H − IE] = 0

give the eigenvalues approximately. The calculation is greatly facilitated by the three-point
recurrence relation

Dn(E) = Dn−1(E)(Hnn − E)−H 2
n,n−1Dn−2 n = 2, 3, . . . , N (10)

with the starting conditionsD0 = 1 andD1 = H11−E. This recurrence relation exhibits the
same structure as in the case of a real potential, but not the same properties. In the case of a real
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potential every term of the sequence is real, and the set constitutes aSturm sequence[9, 10].
This property allows one to devise a simple search algorithm, combining the counting of sign
changes of the sequence with the bisection method to determine efficiently the eigenvalues.

This scheme is not appropriate for our case because the potential is complex. However,
an important feature of our approach is that PT symmetric potentials give rise to determinants
which are polynomial functionsE with real coefficients. The proof is quite simple. First one
notices that the diagonal matrix elements satisfy the rule

Hii = H ∗N−i+1,N−i+1,

consequence of the PT symmetry. So, the time reversal operation T, which corresponds to
changing each element of the diagonal by its complex conjugate, is equivalent to applying
the parity P operation, which corresponds to changing every element of the diagonal by its
symmetric with respect to the centre of the diagonal (this operation is carried out by a similarity
transformation with an orthogonal matrix having all elements equal to zero with the exception
of the counter-diagonal elements which are unity).

In conclusion, the determinant ofH − EI is real for real values ofE. This is true only
if Xmin = −Xmax, in such a way that only the determinantDN is real, but not the terms of
the sequenceDn with n < N . This feature allows the use of the robust bisection method to
determine the eigenvalues.

In almost all cases, we have set the value ofα and then determined the corresponding
eigenvalue. However, in the neighbourhoods of the points where two real eigenvalues collapse
into a pair of complex conjugate eigenvalues, it is more convenient to determine the value of
α for a given eigenvalue. In any case, the method is simple and robust.

5. The mutual interplay of α, β and energies

Having arrived at the proper way of extending our calculations beyond the special points
α = 4N , our next step is the recomputation of figure 1 including some excited levels.

Figure 4 shows results for several levels and for the two sets smoothly connected with
α = 2 andα = 6. The main feature of this figure is that there is a one-to-one correspondence
between an eigenvalue withα close to two and an eigenvalue of the real confining potential
with α = 2. The same situation takes place atα = 6, and it is easily proved by means of
perturbation theory forα close to 2, 6, . . . .

Our numerical calculations suggest that there will be real eigenvalues within each family
with α greater than the reference valueαR = 2, and that for smaller values ofα the real
eigenvalues merge into pairs of complex conjugate values ofE, until reaching the vicinity of
α = 1 where once again real eigenvalues are allowed.

Figure 5 shows in detail the special characteristics of the levels nearα = 1 for β = 0. In
particular, this figure illustrates the simultaneous jump of the fourth and fifth levels into the
complex plane, nearα = 1.15, and their simultaneous return to the real axis whenα is slightly
greater than unity. The same pattern also seems to happen for higher levels. Obviously, as
far as the characteristic polynomial is real, the transition from real to complex values must be
in pairs. We have not observed a similar phenomenon in the case of the set connected with
α = 6, but it may well happen for levels of energy higher than those shown in figure 4.

Up to now we have concentrated on calculations withβ = 0. Figure 6 illustrates the role
of the parameterβ. In addition to the caseβ = 0, this figure also displays the lowest levels
for several values ofβ, both positive and negative. The interesting role ofβ is to switch the
speciallevel, i.e., the level which ultimately will move aroundα = 1. With its help one may
choose this special level to be the first one, (β = −0.25), the third one (β = 0), the fifth one
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Figure 4. Spectrum of the PT invariant Hamiltonian with the potentialVαβ andβ = 0, showing
several bound states corresponding to two families, one connected withα = 2 (continuous curves)
and the other connected withα = 6 (dashed curves).

Figure 5. Enlarged view of the spectrum forβ = 0 nearα = 1.

(β = 0.25) and so on. Because of the special way the levels form the pairs, one should not be
surprised that even levels cannot becomespecialin the above-mentioned sense.

6. Quasi-algebraic study

As in our previous paper on the subject, we have also supplemented the numerical calculation
with the Riccati–Pad́e method (RPM). Whenα = 2 andβ = 0 the potential-energy function is
parity invariant and the RPM leads to just one Hankel determinant from which one obtains the
eigenvalues [12]. The calculation is straightforward and the rate of convergence sufficiently
great as shown in table 2.
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Figure 6. Several eigenvalues computed atβ = 0.5,β = 0.25,β = 0 andβ = −0.25.

Table 2. The RPM ground-state energy forβ = 0 andα = 2 in terms of the dimension of the Padé
determinant.

D RPM root

2 1.213 616 523
3 1.211 409 311
4 1.211 411 109
5 1.211 410 983 0
6 1.211 410 984 169
7 1.211 410 984 175 5
8 1.211 410 984 175 27

For non-Hermitian cases we change the coordinate according tox = iq so that the
Hamiltonian operator becomes

−H = − d2

dq2
+ [− sin(q)]α cos(q)β

and we can apply the RPM as in the case of a real Schrödinger equation. If the potential energy
is an even function ofq we apply the method just indicated; if it is not then the RPM leads
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Table 3. The RPM ground-state energies for the non-Hermitian casesα = 1 andα = 3. In both
cases isβ = 0.

α = 1 α = 1 α = 3 α = 3
D E i9 ′(0)/9(0) E i9 ′(0)/9(0)

2 1.655 005 966 1.033 573 034 — —
3 1.765 033 153 1.095 023 981 1.385 656 774−0.504 969 7062
4 1.765 157 398 1.095 137 449 1.349 869 536−0.476 995 2880
5 1.765 157 246 1.095 137 384 1.350 149 473−0.477 153 6171
6 — — 1.350 140 759−0.477 152 0606
Numeric 1.765 157 25 1.095 137 37 1.350 140 990−0.477 152 00

Table 4. The RPM ground-state energies for the non-Hermitian casesα = 1 andα = 3 with the
complex rescaled Hamiltonian. In both cases isβ = 0.

D E(α = 1) E(α = 3)

2 1.765 248 635 2.609 040 864 09
3 1.765 157 328 2.595 107 274 93
4 1.765 157 255 2.595 248 416 37
5 1.765 157 255 252 31 2.595 245 998 23
6 1.765 157 255 253 36 2.595 246 050 87
7 1.765 157 255 253 358 7 2.595 246 050 34
8 1.765 157 255 253 358 74 —

to two Hankel determinants [13] from which we obtain bothE and−i9 ′(0)/9(0). Table 3
shows results forα = 1 andα = 3 in excellent agreement with the numerical integration
discussed above.

We have carried out the RPM calculations algebraically by means of Maple, resorting to
a numerical approach just at the end in order to obtain the roots of the Hankel determinants
[12, 13]. For this reason the requirement of computer memory is considerable in the case of
a non-symmetric potential-energy function, and we cannot handle determinants of the same
dimension as in the symmetric case. Forβ = 0 we have tried to overcome this problem by
means of the change of coordinatex = i(u + π/2) [11] and applying RPM for symmetric
potential-energy functions to the resulting Hamiltonian operator

−H = − d2

du2
+ [− cosu]α.

Table 4 shows results forα = 1 andα = 3. In the former case the result is identical (though
more accurate) to the one shown in table 3; however, in the latter case we do not obtain the
lowest eigenvalue but the first excited one. We have not yet being able to justify this anomalous
behaviour of the RPM whenα = 3.
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